

Summer Research
Internship Report

A Study on MD-5, Wang’s attack on MD-5 and
APOP attack

Submitted by-

Raagi Sukhlecha (200901148)

Lalit Agarwal (200901159)

Mentor- Prof. Anish Mathuria, DA-IICT

Start Date of Internship- 14th May, 2012

End Date of internship- 13th July, 2012

Preface

This report documents the work done during the summer internship at DA-IICT

under the supervision of Prof. Anish Mathuria. The report will give an overview of the

topics we have covered with their technical details. The results and the inferences are

discussed and analysed.

This study involved understanding the attack on APOP given by Gaetan Leurent in

his paper “Practical key recovery attack against APOP, an MD5 based challenge response

authentication“, Int. J. of Applied Cryptography, 2008. Understanding the attack required,

understanding MD-5, Wang’s attack and APOP challenge response mechanism. Apart from

this, it also covered a brief study of some practical attacks based on Wang’s attack.

Raagi Sukhlecha

Lalit Agarwal

Contents

Introduction .. 4

The Goals .. 4

MD-5 ... 4

Length padding in MD-5 .. 7

Why padding length should be as small as possible? .. 7

Why is the padding necessary? .. 7

Attack on MD-5 ... 8

Wang’s Attack ... 9

APOP ... 11

The Mechanism ... 11

The Attack ... 12

The Approach .. 12

The Algorithm .. 13

The Attack in practice .. 14

Message Freedom ... 14

Attack Complexity ... 14

Conclusion ... 14

Future Scope ... 15

References .. 15

Introduction

APOP ("Authenticated Post Office Protocol") is an extension of the Post Office Protocol

(POP) in which the password is sent in encrypted form. With standard POP, the user name

and password are sent in plain text over the network which can be intercepted by a malicious

third party. APOP provides a simple challenge-response authentication which uses

the MD5 hash function in an attempt to avoid replay attacks and disclosure of the shared

secret. Some of the mail clients implementing APOP include Mozilla Thunderbird, Opera

Mail, Microsoft Outlook, KMail.

 However, there have been attacks which use colliding messages to recover part of the

password used in the APOP authentication protocol. Since we actually need a little more than

mere collisions, we look into the details of MD5 collisions. In Wang’s attack, message

modifications allow to deterministically satisfy certain sufficient conditions to find collisions

efficiently. Unfortunately, message modifications significantly change the messages and one

has little control over the colliding blocks. The attack presented in the report allows choosing

small parts of the colliding messages, which will allow building the APOP attack. This shows

that collision attacks can be used to attack real protocols, which means that finding collisions

is a real threat.

The Goals

 To understand the internal working of MD5.

 To find the motivation behind including length padding in the implementation of the MD5

Algorithm.

 To gain an insight into one of the major attacks on MD5- Wang’s Attack.

 Understand the APOP and the attack against APOP given by Gaetan Leurent in the paper

“Practical key recovery attack against APOP, an MD5 based challenge response

authentication“, Int. J. of Applied Cryptography, 2008.

 Implement and simulate the attack.

MD-5

http://en.wikipedia.org/wiki/Challenge/response
http://en.wikipedia.org/wiki/MD5
http://en.wikipedia.org/wiki/Cryptographic_hash_function
http://en.wikipedia.org/wiki/Replay_attack
http://en.wikipedia.org/wiki/Shared_secret
http://en.wikipedia.org/wiki/Shared_secret
http://en.wikipedia.org/wiki/Mozilla_Thunderbird
http://en.wikipedia.org/wiki/Opera_Mail
http://en.wikipedia.org/wiki/Opera_Mail
http://en.wikipedia.org/wiki/KMail

MD-5 (Message digest -5) is a hashing algorithm based on Merkle damgard construction1. It

takes in message blocks, pads them with message length to make them multiple of 512 bits

and produces 128 bit output.

 The compression function takes an initialization vector of 128 bits and a message block of

512 bits; the output of this compression function (128 bits) is then given as input to the next

compression function. Each compression function in turn consists of 4 rounds of 16 steps

each (64 steps). Each message block of 512 bits consists of 16 32 bits word; therefore each

round uses one word of the message block. Output of round i is Qi and initialization vector is

given as (Q-4,Q-3,Q-2,Q-1).The step function for round i is given as :

Qi = (Qi-4 + fi +mi + ki) <<< si

Where fi is function on Qi-3, Qi-2, Qi-1, mi is the message word and the message word chosen

depends upon the predefined permutation, ki and si are constants. The addition is modular

addition mod 232. fi , mi , ki , si are so chosen to produce larger avalanche effect and to make

hashing function resistant to collisions.

Merkle Damgard Construction

1 Included in note

Rounds of MD-5

Note:

Merkel Damgard Hash Function

Markle-Damgard or MD hash function has three basic components namely,

(1) an underlying compression function f : {0, 1}b+t → {0, 1}t for some b > 0,

(2) an initial value IV ∈ {0, 1}t

(3) an easily computable padding rule pad : M → ({0, 1}b)
+ for some message space M.

Ki

ᴨ(i)

Figure 3: MD 5 Step

Classical iterated function fIV
+ is defined as:

({0, 1} b)+ → {0, 1}t

as fIV(M1 , · · · , M) = f (f (· · · f (IV, M1), · · ·), M), M1 , · · · , M ∈ {0, 1} .

The MD hash function is therefore calculated as follows:

- padding(M) → ({0, 1} b)+

- fIV
+ (padding(M))→ {0, 1}t

Length padding in MD-5

To make each message block of 512 bits, message block is padded with 1 followed by zeros

and the message length. This padding is suffix free and is required to prevent attack on the

hash function.

Why padding length should be as small as possible?
If the size of padded bits is more, it may cost more invocations of the underlying compression

function. So, in terms of efficiency of hash function, one should try to keep size of pad as

small as possible.

Why is the padding necessary?

Suffix free padding: Let X, Y ∈ {0, 1}∗. We call X a suffix of Y if there exists a binary

string Z such that Y = Z X. A padding rule pad is called suffix-free if, for any M != M’, pad

(M) is not a suffix of pad (M’).

The lemma2 on suffix free padding says that if we have collision for iterated hash f+ 3(i.e., f+
h

(X) = f+
h’ (X’)) for distinct inputs of with same length then there must be an intermediate

collision during computations of f+
h (X) and f+

h’ (X’).

Suffix free padding is sufficient condition for collision preserving hash function

If pad is suffix-free padding rule then given any collision pair (M, M’) for MDf
pad we can

construct a collision pair of compression function f efficiently.

Proof:

Let pad (M) = X and pad (M’) = X’. Without loss of generality we assume that |X| ≤ |X’ |.

X ∈ ({0, 1}b)k and X’ = (Z, Y) where Y ∈ ({0, 1}b)k and Z ∈ ({0, 1}b)+

h‘= fh (Z).

Since, fh (X) = fh (X’)

2 Refer to References 5.
3 It is assumed throughout that compression function f is so chosen that it is collision resistant

hence fh (X) = fh’ (Y) where X,Y ∈ ({0, 1}b)k

Since, X != Y as pad is suffix-free.

Therefore by lemma given above for two distinct inputs if a hash function gives a collision

then the compression function (f) has a collision and the thus the collision advantage for f is

at least the collision advantage of MD hash function.

Suffix free padding is necessary condition for collision preserving hash

function
Consider a padding rule which is not suffix free, then the hash function is not collision resistant even

though the underlying compression function is collision resistant.

Proof:

 Consider a compression function which is collision resistant and let M and M’ be messages such the

pad (M) is suffix of pad (M’) (= Xm || pad (M), where X = ({0, 1} b)* and m = {0, 1}b).

Case 1 : X = λ (empty string) i.e. pad (M’) = m || pad (M)

Define a function f such that

 f(x) = f’(x)||0 for x != IV || m

 = IV for x = IV || m

Assume that last bit of IV = 1

since f’(x) is collision resistant and for x= IV||m and x!= IV||m there won’t be any collision since the

last bit of f(x) do not match in that case.

Therefore, there is a collision : Hf
pad(M’) = fIV

+ (m || pad (M)) = fIV
+ (pad (M)) = Hf

pad(M)

Thus , Hf
pad(M) = Hf

pad(M’)

Case 2 : X = ({0, 1} b)+

Let IV’ = f’’(X) where f’’(x)= f’(x) || 0 and f’(x)is a collision resistant function.

Let the compression function be

f(x) = f’(x)||0 for x!= IV’||m

 = IV for x= IV’||m

Hf
pad(M’) = fIV

+ (Xm || pad (M)) = fIV’
+ (m || pad (M)) = fIV

+ (pad (M)) = Hf
pad(M)

Thus , Hf
pad(M) = Hf

pad(M’)

Attack on MD-5

Though Dobertin attack (of MD-4) was not completely successful on MD-5 yet it proved that

even MD-5 is not resistant to collision and an algorithm implementing attack on it can be

found out. In 2004, Xiaoyun Wang published an attack on MD-5, popularly known as the

“Chinese Attack”. Only one pair of colliding block was given and nothing was known about

the algorithm behind the attack. Reverse engineering of the attack provided useful

information about the computational part of the attack.

Wang’s Attack
Wang’s attack is a differential attack which finds out two 1024 bits of colliding message

blocks and involves differences in output and input blocks4.

Wang’s attack can be viewed as consisting of the following steps:

1. Pre computational phase :

a. Specifying an input difference that is let M and M’ be two message blocks

then specifying M – M’. In Wang’s attack ,

∆M0 = M0’ – M0 = (0, 0, 0, 0, 231 ,0,0,0,0,0,0,215,0,0,231,0)

∆ M1 = M1’ – M1 = (0, 0, 0, 0, 231 ,0,0,0,0,0,0,-215,0,0,231,0)

b. Specifying the output difference, this is the most mysterious part of the attack

and till date all the attacks are based on Wang’s differential patterns.

4 Output differences are difference in output of step i of the compression function ie Qi – Q’i. Input differences
are differences in message block.
Output differences are signed difference and are more restrictive. Input difference is modular difference.

Signed difference, y=y’-y

 Denote yi=1, yi=0 as “+”

 Denote yi=0, yi=1 as “”

 Denote yi=yi as “.”
 Consider bytes

 z = 10100101 and z = 10010101

 Then z is “..+-....”
 It is more restrictive than modular subtraction.

 Some of the Output Differences

c. Given the differential patterns, derive a set of sufficient conditions on the

output (along with the necessary conditions on intermediate values).

 A subset of the Sufficient Conditions

2. Computational part of Wang’s : determine a pair of 1024 bits of block for which

these conditions will satisfy :

a. Generate a random 512 message M0.

b. Use single step modification – direct modification of the message word to

satisfy output conditions in the early steps (0-15).

i. Select a message mi

ii. Compute the corresponding Qi

iii. Modify Qi to satisfy the conditions.

iv. Re-compute mi

c. Use multi step modifications – modification of the message such that

previously satisfied conditions still hold – to satisfy condition in the steps 16-

31.

i. Compute Qi from the message mi

ii. Modify Qi to satisfy the conditions and re-compute mi

iii. Re-compute Qi’s and mi’s in the first round.

d. Check conditions for all the other steps and if not satisfied go to 4b. This is

satisfied probabilistically and input difference was chosen in a way that this

probability is high.

e. Similarly, find out M1

Compute M0’= M0 +∆M0

 M1’ = M1 + ∆ M1

 The MD5 of (M0, M1) is same as that of (M0’, M1’)

Wang gave only one pair of collision which is-

M0 = 2dd31d1 c4eee6c5 69a3d69 5cf9af98 87b5ca2f ab7e4612 3e580440 897ffbb8

634ad55 2b3f409 8388e483 5a417125 e8255108 9fc9cdf7 f2bd1dd9 5b3c3780

M1=d11d0b96 9c7b41dc f497d8e4 d555655a c79a7335 cfdebf0 66f12930 8fb109d1

797f2775 eb5cd530 baade822 5c15cc79 ddcb74ed 6dd3c55f d80a9bb1 e3a7cc35

M0’=2dd31d1 c4eee6c5 69a3d69 5cf9af98 7b5ca2f ab7e4612 3e580440 897ffbb8

634ad55 2b3f409 8388e483 5a41f125 e8255108 9fc9cdf7 72bd1dd9 5b3c3780

M1’=d11d0b96 9c7b41dc f497d8e4 d555655a 479a7335 cfdebf0 66f12930 8fb109d1

797f2775 eb5cd530 baade822 5c154c79 ddcb74ed 6dd3c55f 580a9bb1 e3a7cc35

Hash: 9603161f a30f9dbf 9f65ffbc f41fc7ef

APOP

The Mechanism
The server implementing the APOP command sends a challenge (msg-id) in their greeting

message and the client authenticates itself by sending the username and the MD5 of the

challenge concatenated with the password i.e. MD5(msg||passwd). The server performs the

computation on his side and checks if the digests match. Since the message is encrypted using

MD5, the eavesdropper will not be able to learn the password.

APOP Challenge-Response Mechanism

In the above example, the password is ‘penguin’ and hence the digest is MD5

(‘<171.11776027@pop.mail.com>penguin’).

The Attack

The server creates a pair of specially crafted challenges such that the corresponding digest

will collide only if some part of the password was correctly guessed. For each character in the

password, the server will create 256 pairs of challenges for each of the possible 256 possible

ASCII characters. Thus the server can learn the password in linear time one by one.

Colliding Messages M and M’ when p0=x, C and C’ are the corresponding challenges

In the above example if the server guesses that the first password character is ‘x’, so it will

create the corresponding challenges C and C’ and send the challenges to the client. The client

will respond to the challenge with the messages M and M’ where

M = <???????......???????>p0p1p2p3...pn-1

M’= <//////////.......///////////> p0p1p2p3...pn-1,

where ‘?’ and ‘/’ represent any character chosen by the collision finding algorithm

If p0=x, the two hashes will collide after the second block the two hashes will collide after the

second block, and since the end of the password and the padding are the same, we will see

this collision in the full hashes. Therefore we are able to test the first password character

without knowing the others.

The Approach
Since we need to generate collisions with a specific format and some chosen characters,

message freedom is required. It assumes that we are given a set of sufficient conditions on the

internal variables Qi that produces collision. This Approach tries to find a message M such

that when one computes a hash of the message, the conditions on the internal state variables

Qi hold. The approach differs from other approaches as instead of modifying the message to

satisfy some conditions, we first choose the Qi’s and then find the corresponding messages.

Also it gives a generic algorithm that can take any path as input like Wang, Klima, Stevens.

The Algorithm
We choose a point of choice, pc (first step whose condition will not be satisfied

deterministically) and a point of verification, pv (step where we will start using tunnels).

Since we want π(16)< π(17)<... < π(pc-1)<12, so we choose pc=19 and pv will be 23 for

MD4. While for MD5, the respective values of pc and pv are 19 and 24. The choice of pv is

such that we will use the tunnels only for the third round.

If we need to generate collisions where the last t words are chosen, the algorithm proceeds as

follows-

1) The algorithm begins by fixing the Qi’s from the middle which allows dealing with

the first round as well as beginning of the second round at the same round. We begin

by fixing Q12-t, Q13-t, Q14-t, Q15-t.

2) We compute Q16-t to Q15 if the conditions on the first state Q16-t are not satisfied. We

might have to try many choices of Q12-t, Q13-t, Q14-t, Q15-t so that the conditions are

fulfilled.

3) We will choose the Qi from step 0 to π(pc-1) and when we hit a message mi that is

also used in the second round with i= π(j), we can modify it to generate a good Qj.

Thus we can fulfil the conditions up to round pc-1 almost for free.

4) In the end, we will make random choices for the remaining steps (Q(pc-1) to Q11), until

we have a message that follows the path up to step pv-1 and finally we use the tunnels.

In case t=2 i.e. we need to fix the last 2 words, the algorithm will proceed as follows-

Assumption- We are given a set of conditions on the Qi’s which needs to be satisfied.

1) Fix Q10, Q11, Q12, Q13 so that the condition on these Qi’s hold.

2) Compute Q14, Q15 from the previous Qi fixed in step 1.

3) Check if the condition on Q14 is satisfied. If not, try other possible choices for Q10,

Q11, Q12, Q13.

4) Choose the Qi from step 0 to π(pc-1) and when we hit a message mi that is also used in

the second round with i= π(j), we can modify it to generate a good Qj. Thus we can

fulfil the conditions up to round pc-1 almost for free. For MD4 and MD5, the value of

pc is 19.

5) Select random values for the steps (Q(pc-1) to Q11), until we have a message that

follows the path up to step pv-1

6) Finally we use the tunnels for the steps Qpv to N. For MD4 and MD5, the value of pv

is 23 and 24 respectively.

The Attack in practice
In order to implement this attack, we need to efficiently generate MD5 collisions with some

chosen parts i.e. we mainly have to fix the last word. Additionally the POP3 RFC requires the

challenge to be a msg-id, which means that:-

 It has to begin with ‘<’ and end with ‘>’.

 It must contain exactly one ‘@’, and the remaining characters are very restricted, in

particular, they should be ASCII characters

 There are only four characters which are rejected in the challenge:

o 0x00 Null: used as end-of-string in the C language

o 0x3e Greater-Than Sign (‘>’): used to mark the end of the msg-id

o 0x0a Line-Feed: used for end-of-line (POP is a text-based protocol)

o 0x0d Carriage-Return: also used for end-of-line

A Challenge Response

Message Freedom
Using this approach, we can choose last three message words in a one-block MD4 collision

and three specific message words in a two-block MD5 collision. For MD5, the first block is

computed only once and includes ‘<’ and ‘@’. In order to learn the ith password character, we

need to fix the last (i+1) characters which are ‘>’ and (i-1) password characters.

Using the attack, we can only recover the first three characters of the password. For MD5, the

Wang’s path uses a message difference in m14. Due to the message difference we cannot

modify the message m14 and hence can only recover 3 characters of a password.

Attack Complexity

If we assume that the password is 8 characters long and each characters has 6 bits of entropy,

then we need to generate 3*25 collisions and wait for about 3*26 identifications. If each

collision takes 5 sec. to generate, then it will take about 3 hours to recover the last three

characters of the password. If we try to recover the first three characters of the password

using a brute force attack, it will require 256*256*256 computations while this attack only

requires 256+256+256 computations.

Conclusion
We studied and understood the theoretical aspect of the attack against APOP. Also in order to

understand the attack, we gained an insight into the working of MD-5 and Wang’s Attack.

Due to security issues, we were not able to get the details of the implementation of the attack

from the author and hence were not able to simulate the attack on a PC.

Here are our findings and conclusion

1. Suffix free length padding is necessary and sufficient condition for collision free hash

function given that the underlying compression function is collision free.

2. Wang’s attack can be used to break security of MD-5 but the colliding blocks look

random and therefore have to be hidden.

3. The algorithm by Gaetan Leurent gives some message freedom in the colliding blocks

and thus can be used to craft a practical attack against APOP used by most of the mail

clients.

Future Scope

Further work in this area of study can help in finding out an algorithm, for practical

implementation and simulation of attack which our team was not able to do.

References
1. Ch5, Applied Cryptanalysis – Breaking ciphers in real world, Mark Stamp and

Richard M. Low.

2. Hashing in Computer Science: Fifty Years of Slicing and Dicing, Alan G.Konheim.

3. Finding MD5 Collisions on a Notebook PC Using Multi-message Modifications ,

Klima, IACR Eprint archive, 2005

4. Tunnels in Hash Functions: MD5 Collisions Within a Minute , Klima, Cryptology

ePrint Archive, Report 2006/105

5. Characterizing Padding Rules of MD Hash Functions , Preserving Collision Security ,

Mridul Nandi, ACISP '09 Proceedings of the 14th Australasian Conference on

Information Security and Privacy

